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We study the large-time dynamics of a Markov process whose states are finite but unbounded graphs. The
number of vertices is described by a supercritical branching process, and the edges follow a certain mean-field
dynamics determined by the rates of appending and deleting: the older an edge is, the lesser is the probability
that it is still in the graph. The lifetime of any edge is distributed exponentially. We call its mean value
(common for all edggsa parameter of memory, since it shows for how long the system keeps a particular
connection between the vertices in the graph. We show that our model provides a bridge between two well-
known models: when the parameter of memory goes to infinity this is a generalized model of random growth,
and when this parameter is zero, i.e., no memory, our model behaves as a random graph. Thus by introducing
a general class of dynamical graphs we have a unified overview on rather different models and the relations
between them. We find all the critical values of the parameters at which our model exhibits phase transitions
and describe the properties of the phase diagram. Finally, we compare and discuss the efficiency of the
corresponding networks.
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I. INTRODUCTION A. The model

. . . Let V(t) and£(t) denote the set of vertices and the set of
Randomly grown networks became a subject of mtensweedge& correspondingly, at timeWe assume that at=0 we

study over the Ia§t few yeafsee, e.g., Ref§1-6] and the  pave just one vertex with no edga/(0)|=1 and£(0) is an
references therejn Examples of such systems range fromempty set.

the artificial structures such as the World Wide Web to the with time, our graph accumulates vertices, meaning that
social networks and the biological neural networks. Clearly,|v(t)| is increasing, in the following random way. Every
the mathematical models describing these structures possegsitex in the graph generates new vertices with intengity
different properties. The authors of “Are randomly grown and independent of the rest of the system. Put in another
graphs really random?[3] give a negative answer to this way, with every vertex in the graph we associate a Poisson
guestion, showing dramatic difference in the behavior of twgprocess with intensityy, every occurrence of which corre-
classes of models. sponds to the appearance of a new vertex in the graph. Each

We investigate a general model that apparently provides Bewly acquired vertex generates new ones in the same fash-
bridge between the randomly grown grafBand the clas- ion and independent of the rest. Thus the number of the
sical random graphk,8]. Recall a definition of a randomly Vertices|V(t)| is described by a supercritical branching pro-
grown network according to Ref3]. Starting with a single ~cess for more details, see REJ)). In particular, it is easy to
vertex the graph evolves in a discrete time, acquiring a nev€€ that the averaged size of our network grows exponen-
vertex at each step. Also, at each step a new edge appedi@ly:
with a probability § between two vertices chosen uniformly _ ot

7 i . E|V(t)|=e". (1)

over all the existing vertices of the current graph. This is a
simple but nontrivial example of a nonhomogeneous network

where the degree of a vertex depends on its age. One of thghere E denotes the sign of mathematical expectation. As

basic features of this model is the monotonicity associatedoon as there are two vertices in the graph, from every vertex

with the acquisition of edges: once an edge is introduced intghe edges are drawn with a common intenaitgnd indepen-

a model it stays there forever. dent of other processes. The end of an edge drawn atttime
On the other hand, there are many real world networksrom a vertexo € V(t) is chosen uniformly among the rest of

affected by the aging of the connections as well as nodesxisting verticed/(t)\{v}. In other words, with every vertex

e.g., social networkgg] lose permanently some connections, we associate another Poisson process with intensityhose

the neural networks change their architecture due to synaptievery occurrence corresponds to the appearance of a new

plasticity, or the so-called decaying netwofKd are subject edge from this vertex to the one chosen with equal probabili-

to a permanent damage of the edges. ties among the rest of the vertices in the graph. Furthermore,
Our aim here is to analyze the concurrent roles of growtrany edge in the graph is deleted with an intengityThis

and aging resulting in removal of links, in the structure of ameans that the lifetime of any edge is exponentially distrib-

dynamical random graph. Let us introduce the model weuted with the mean value &/ All the processes of appending

study here. and deleting are independent.
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A point the properties of the graph change drastically. Surpris-
ingly enough, the result is that this jump is not as big as one
might expect by switching from a graph that accumulates all
the edges to the one that has only the relatively new edges.
More precisely, we prove below that

supercritical area

=~ (0.723
R subcritical area

A(7,00=~ and M\ (y,u)=—. @
8 210 4

025 It is shown in Ref.[10] that in the supercritical phase the
0'1'251 ‘ long paths can be composed entirely of the edges whose age
I is uniformly bounded. This, as well as a relatively small
i s jump at zero confirmed by E@R), implies that the process of

FIG. 1. Phase diagram. A graph of functinfi(, ), u=0, for removal of links regarded usually in a negative sense as a
a fixed valuey>0. If the parameters belong to the supercritical Permanent random damage” to a netwof.g., Ref.[4]),
area, then the corresponding graph has asymptotically almost suref)@y have in fact a positive effect on the efficiency of the
the giant component of the order of the entire graph. If the paramD€twork. Namely, there is no need to preserve all the con-

eters lie in the subcritical area, then the corresponding graphs do nB€ctions in order to maintain the giant component, if the
possess such a component. Whar=0 the critical value is System shows a sufficient enough growth. Therefore we

A“(y,0)= /8, and lim, o \(y,u) = y/4. As u—o the graph's ~come up with a different interpretation of the rate of removal
asymptotic line is ft—\)/2. Observe that the functiaoa®(y,u) is ~ u: we call the value 14 a parameter of memorgince it
nonlinear inu although the graph looks like a straight line for this shows for how long the system keeps or “remembers” any
particular choice ofy. particular connection between the vertices. This leads to the
following classification of the general class of the dynamical

This model is a subgraph of a certain random grammagraphs with respect to the parameter of mem@uyaging:
introduced and studied by Malyshev in Rgf]. More de- dynamical graphs without memory {d#0)—random
tailed analysis of the graptV(t),£(t)) can be found in Ref. graphs, dynamical graphs with an infinite memory 1/
[10], where a number of important characteristics of this=%)—randomly grown networks, and the model we study
graph are presented, in particular, the asymptotics of the corfrere we shall call eventualigynamical graphs with a finite
ditional probabilities of the edges is derived. memory(0<1/u<w©).

Rephrasing the authors of R¢8] one may note that the
randomly grown graphs have an excess of memory to be
really random.

B. Comparison and classification
of the dynamical graph models

If the edges are not being deleted in our model, it clearly
resembles a model of random growth. We prove be(Sec.
I1) that when the rate of deleting is zero, our model is We shall show here that the distribution of vertex degree
indeed a generalized randomly grown network in a continudrastically changes from being exponential wher0 to
ous time, but whenu—c our model behaves as a random heing generalized Poisson whern>0, and finally converg-
graph. Observe also that whenis positive and finite our jng to Poisson whem— .

model captures the properties of the social netw@kas Let dy(t) for anyk=0 denote the expected number of the
well, namely, that the average degree of the vertices is Unigertices of degreek at time t in our graph G(t)
fprmly bounded and the system loses old enough connec= (v(t),£(t)). Thus we havel,(0)=1 andd,(0)=0 for all
tions. Furthermore, parameter allows one to choose a k=1 within a small time interval t(t+A] the expected

proper scaling of a network’s growth with respect to the apmumber of isolated vertices changes as follows:
pearance of new connectiorié lack of this property in the

Il. DEGREE DISTRIBUTION

known growing networks was_discussed in F{éﬂ) do(t+A)=do(t) — 2N Adg(t) + wAd,(t) + yAE|V(D)]
Clearly, whenu and y are fixed the connectivity of our
model increases witih. Our main result here is the phase +0(A), 3

diagram on the entire space of the parameterD, u=0,

and\>0 (see Fig. 1 and the details in Sec. IV beJowor  where yAE|V(t)| is simply the expected number of new
any fixed y>0 we find a functiol\“(y,u), =0, defined vertices appearing within the periot,{+ A], and the coef-

as a line separating two areas of parametéls:if \ ficient 2\ in the second term is due to the fact that every
>\“(y,u) then asymptotically almost every graph pos-vertex increases its degree by producing itself an edge with
sesses a giant component that has a positive fraction of glirobabilityAA, or by being chosen by any other vertex in the
the vertices, andll) if A<\“(y,u) the graphs do not have setV(t) to be connected to. Also, every vertex decreases its
such a component. We will show thet'(y,u) for any fixed degree as soon as one of the adjacent edges is deleted. Mak-
v>0 is a continuous function ip>0, but as one can guess, ing use of the properties of the Poisson process and taking
this function has a jump at =0 due to the fact that at this into account Eq(1) we derive from Eq(3):
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do(t)=—2Ndo(t) + udy(t) + ve™. 4
A similar argument leads to the following equations:
di (1) = = 2N dy(t) + (K + 1) dic 1 (1) — k(1)
+2Ndy (1) 5

for all k>1. It is natural to search for a solution of this

system assuming that

d(t)
“mv—pk,

t—o

k=0. (6)

Clearly, py is the probability that in the limiting graptast
—o) a randomly chosen vertex has a degkeand in par-
ticular

> pe=1. @
k=0

Then we have by Eqg4), (5), and(6)
YPo= —2NpPo+ ¥+ 1P,

k>0.
®

To avoid confusion we shall write sometimeg,
=py(u,y,\). Consider some particular cases.
If =0 itis easy to derive from Eq$8) and(7)

YPk= 2N (Pk-1~ Pr) — mLKp— (K+1) Py 1],

(2N y)¥
Pk= pk(O,%)\):mm, k=0 (9

for all y>0, A\>0. Thus under the conditiop=0 the de-
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and fork>1,
20\t 20\t
k= 7 H(p1_po): 7 H51,
which yields

k
PK=Po+ n; Sk=Po+

2\ Do—l)E (2_)\)n1nil

7 n=1\7%
(11)

Observing thatp,—0 ask—o [see Eq.(7)], we get from

here
Po= ¥ Po

(e*7r-1).
This gives us
:l —a 2Ny
Po 2}\(1 e )

which together with Eq(11) results in the following gener-
alized Poisson distribution:

“2My k=0.

(12

” 2x)n1

Y
pk_pk(%?’a)\)—ﬁe n=k+1( v

In the general casg>0 one can write the solution to the
system(8) in the form

pk(nyi)\): pk( Y ‘}’,7\)"‘21 (‘y_ /—L)npkna

gree distribution in our model follows the same exponentiaivhere the coefficients,, satisfy certain recurrent relations
law as does the model of randomly grown network. In fact,fo be derived from Eq(8). However, we shall not focus on
when\/y=<1 we obtain exactly the same distribution as for finding exact solutions in the general case.

a randomly grown network3] with parameters:=\/y. On

Consider now another special case assumirg\ (u) so

the other hand, unlike a randomly grown network, our modethat

is defined for all valuea./y>1 as well. This is due to the
fact that we have an extra parameter of the system’s growth lim
in time. Furthermore, our network evolves in a continuous

(13

time. Therefore we call this case a generalized randomly

grown network.
Let now p>0. First of all we observe that when=y
>0 the systen{8) becomes

2\
1- 7po+(p1_po):01

2\
7(pk_ Pk-1) = (K+1)(pk+1—P) =0, k>0. (10
Setting 6y:=px— Prk—1, k>0, helps us to solve this system
and get
é _2 1
1= Po— 4

for some positive constaut In this case it is straightforward
to check that in the limit whemu—o while y>0 andc
>0 are being fixed arbitrarily, the following Poisson distri-
bution satisfies Eq(8):

(2c)
ki

>0

This is exactly the limitingasn— o) degree distribution for
the well-known modelG,, , which is a graph om vertices,
whose edges are independent and a probability of any edge is
p=2c/n (see Ref[7]).

Notice that although the degree distribution is not the ul-
timate characteristic of the graphs, we have extra information
about the topology of the graphs, namely, all the models we
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consider here allow edges between any pair of the vertice§.hus we come up with exactly the same relations as obtained
Thus we showed that our graph model interpolates indeeih Ref.[3] but with the parametet/y replacingsin Eq.[3].
between the randomly grown graphs and the random graphRecall that according to E¢3] the values= 1/8 is the point

Ill. THE CASE p=0: ARANDOMLY GROWN GRAPH

of phase transition. Hence, we readily get repeating the same
argument as in Eq3] that for anyy>0 the critical value of
\ at which the mean value of the largest component exhibits

We showed already that the degree distribution for ourz phase transition is
model with =0 follows the exponential law as does the

randomly grown graph3]. But since our range of param-
eters is wider we shall consider also the dynamics of the

sizes of the connected components.

A% (,0) = g. 21)

Let N (t) denote the number of the components of sizelt was conjectured in Ref3] that this phase transition is of

k=1, and letN,(t) =EN,(t). Observe that

Ny (t)=do(t), (195
while for anyk>1 we derive
V(1) — kN (t
Ni(t+A) =Ny (1) =E| —2kN (t)AA MT;()
KN(t)—1
—ZKNk(t))\AW
k
(K=1)N—n(t)
+mn§1 nNn(t)W
+0(A), (16)

an infinite order.

IV. THE PHASE DIAGRAM

Let us fix y>0 and =0 arbitrarily and consider the
corresponding models for different positive values
Clearly, the connectivity of the model increases withWe
already established in E€R1) that A“(y,0)= /8. Whenu
>0 one also expects, by analogy with classical random
graphs, the existence of the unique critical vahf§ vy, u)
that separates the area of parameters where asymptotically
almost every graph possesses a giant connected component
containing a positive fraction of all the vertices, and the area
of parameters where the graphs do not have such component.
Notice that the larger is, the shorter is the life expectation
of any edge, which results in the decrease of the connectivity
of the graph. This in turn implies that for every fixed>0

where the first term on the right-hand side corresponds to thBNctionA(, 1) should be an increasing function pf

events that every vertex from amycomponent might get a
link with a vertex that does not belong to akycomponent,

Let us formulate now our main result, which is an exact
formula for the line of phase transition on the state space of

the second term corresponds to the events that every vertd€ parametersy>0, u=>0,\>0. In the sequel for any two
from any k component might get a link with a vertex that f€al numbersa andb we shall write maga,b}=allb and
also belongs to & component, and the third term corre- min{a,b}=alb.

sponds to an emerging ofkecomponent whenever two com-
ponents whose sizes are summed upktare connected.
Making use of the properties of the Poisson process we d

rive from here

k

NL(6)=~2KAN(D) + 3 3, (k- e M ONin(®)

[V(t)]—1
(17)

If we assumgsee also Ref.3]) that

im £ 24D _ i NV

t—oo |V(t)| t—oo e)/

—a,, k=1, (18)

then according to Eq$15) and(9) we have

1

T TNy

(19

and from Eq.(17) we get the recurrent relations

k
ya,= —2khag+\ 2, n(k—n)a,a.,, k=2. (20)
n=1

Theorem 4.1For anyy>0 andu>0

o k-1
eZ)\”(%MFSUIJ’ X>02k22 XkEiHl g(niDm+1,7,M)<°°},
(22
where
e fuly—1t_q
— if u#Fy,
t . Y M
g(t,y,,u)=0 VM E=
Y t .
-, if w=vy,
Y

andz,,...,7, are independent random variables with a com-
mon exponential distribution with mean value 1.

The proofs of the results of this section are given in the
section below. We just briefly mention here that in the proof
of Theorem 4.1 we use the ideas from branching processes to
compute the probability of existence of a giant component.
The main difficulty to overcome is the nonhomogeneity of
the graph. We exploit in the proof the asymptotics of the
probabilities of the edges derived in RELO].

Next we shall discuss some properties of the phase dia-
gram(see Fig. 1listed in the following corollary.
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Corollary 4.1.For any fixedy>0 the function\®(y,u) ~EL(EAS w, )|
is a strictly increasing continuous function >0, such that R(pm,y):= |lmw- (28)
t—oo
N(y,0)= Z . . . R
v 8’ It is natural to relate this value to the efficiency of a limiting
network: smallefR means a better efficiency singedefines
_ Y the critical mean number of the edges that graph should pos-
lim Ny, u) = 7 (23)  sess in order to maintain the giant component of the order of
w©l0 : .
the entire graph. According to Eq®7) and (1) we have
)\cr , 1
im 22 (24) o A s

and for anyu >0 the valuex®(y,u) is the smallest root of
which by Corollary 4.1 implies

> 1( " )—o (25
i=1 n! wl =i \1+(=Duly] 5 if u=0,
[Note that the first equality simply repeats Eg1) to com- R(p,y)=4 1 if ©l0,
plete the picture herg. L
3 if u—oo,

It is worth noticing that the case= vy is in no way “spe-
cial” compare tou# 7y, and it is easy to see that the function
g(t,y,u) defined in Theorem 4.1 is continuous jn>0. Recall that the corresponding critical ratio of the mean num-
However, the casg.=y is exactly solvable as we already ber of the edges to the mean number of the vertices for a
saw in Eq.(12), and in particular the following formula takes randomly grown graph3] is also 1/8, while for a random

place. graph the critical ratio is 1/2see Ref[7]). This means that
Remark 4.11In the caseu=y Eq. (25 becomes our model with a small positivee needs roughly speaking,
twice as many edges as does a randomly grown graph to

2x\" maintain the giant componefsitill this is twice as less as a

Yy =, random graph needs to do)sblowever, one gains efficiency
of a network by abandoning the condition of an infinite

and thus\“(y, ) = (a2/8)y~0.723y, where a is the small- memory. Also, it is clear that unlike the scale-free networks

est positive real root of the Bessel functidg(z). [2] our model is robust to deletion qf amfe”") nodes since
The results of the Corollary 4.1 show that for any fixed (€ average degree of any vertex is bounded by a constant

positive y function \(y,u) has a jump ajp=0, while this 2\ .

function is absolutely continuous for gll>0. This confirms

in particular, a phase transition of the first orderat 0 V. PROOFS

along this parameter. We do not study here the jump of the

size of the giant component of the graph at phase transition, A. Proof of Theorem 4.1

but we expect that for any fixe¢t>0 and u>0 the phase First of all we notice that in the cage>0 writing equa-

transition at\®" is of the second order by analogy with ran- tions similar to Eq(17) for the mean number of thecom-

dom graphs. ponents does not look like a feasible task, since the mecha-
Observe that the resul4) could be predicted already by nism of splitting a component into two parts due to removal

Egs.(13) and(14), sincec=1/2 is the critical value for the of an edge depends on the very structure of the component.

graphGp, , with p=2c/n. Instead, in order to study the phase diagram we shall elabo-
To emphasize the role of the parameters let us writgate on the ideas of branching processes proved to be useful

L(t)=L(t,\,u,7). One can easily derivesee also Ref1])  in the random graph theof8]. Observe that our process is

that the mean numbe| £(t)| of the edges satisfies the fol- nonhomogeneous. Therefore we need more delicate charac-

°° 1
1+2, (-1) <—>(

lowing equation: teristics for the graph such as the asymptotics of the prob-

q abilities of the edgessee for the details Ref10]).

_ Consider graplgj(t). Setr;=0 and denoter,,n=2, the

— = +

dt ElL)] HEILOI+AEVO], (26) consecutive moments of jumps of the procfé&)|, so that
which together with Eq(1) yields IV(1)[=[V(7,—)|=1 and [V(7)|=n.

E[L(t N1, 7)| = (eM—g ~t). (27) Further we shall write

v

Consider now fol "=\ (y,u), V(D) =100,0r, - T|Um|}' (30
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where for each vertex index s denotes the moment of EX,(v,,s;,t)
appearance of this vertex in the graph. Conditionally on the !

setV(t) we shall reveal a connected component in the graph 1
G(t) using the following algorithm(see also Ref[8]). -
Choose uniformly inv(t) a vertexv to be the root. Find all
the vertices connected to this vertex in the graphg(t), XXk-1({vs,vshs, )=+

1 1 1 k(1
denote them{v.,....v g}, wheres}<---<sk  and call

Nl 2 Ps,v9)
vs V() VO] ogevithey 1 °

1

=E T Vs, Us)
vslgl(t) |V(t)|vsze\%\{vsl} P(vs, 0s,)

them the first generation of the offspringwf . Markvs, as
saturated Then for each nonsaturated but already revealed
vertexv: we find all the vertices connecteddg in G(t) and

not used previously in the algorithm; denote thefy add Xv eV(t)\{UE o ) P(vs,_,0s)- (34)
them to the current tree, and mark as saturated. We call * e

anyvi, an offspring(of the first generationof vZ, and also It is trivial but worth noticing that the expectation sign here
an offspring of the second generation of the vertgx We refers to the indices; that are the random moments of ap-
continue this process until we end up with a tree consisting/®@rance of the vertices in our graph. For the rest of this
of saturated vertices only. Clearly, this procedure resembles Rf0Of let us writed(t) = 6(t, v, u). It has been proved in Ref.
branching process, and we shall call the offspringyft*  [10] that on the condition thdivs,v .y € V(t) and given that

the offspring of thekth generation ob s . |V(sO7)| = Vg3, one has the following asymptotics:
However, the numbeK of the offspring we assign to a ot — (Ot

given Vel’terS at each step of our algorithm depends on the P(vs,v.)=2\ M[Hgl(sgﬂ)],

set of vertices that have been used, and also on the afje Ve,

this vertex. On the condition thatC V(t) is the set of the
vertices in the current tree in our algorithm, Dét(T,s,t) wheree4(u,t)—0 asu,t—~. Consulting Ref[10] for de-
denote the number of offspring of th&h generation of ver-  tails one can see that E(B4) equals

texvs.

: . k-1
One expects that there is no long component in the graph (2 y)th---Jte’ y(tsl)(
o Jo

G(t) if this process dies out with a probability one. On the IHl exp{ — y(SiLsi+ 1)}
other hand, if this process continues for a long enough time

one may expect to get a positive fraction of all the vertices

V(t) in the current component. Thus by analogy with Theo- X O(t—(s; DSH—l))eySHl) dsc--ds;+e(t),

rem 5.4[8] we have for anyy>0 andu >0,
o wheree(t)—0 ast—o~. Making a change of variables in

)\cr(%mzsup{ D limE Xk(vsl,Sl,t)<°°]- (31) this integral we rewrite the last formula as follows:
k=1 t—w

Next we shall prove the following result.

t t
(2)\,),)k ...je*751
0 0
Lemma 5.1For anyk>1 k-1

Hl exp{ 7(3i DSi+1)}9(Si Us; +1)e7 73i+1) dSk . 'dSl

lim E X(vs,,S1.0) L
t—o
k1 +e(t)
:(ZK)kEH 9(—(77iD77i+1),%M)F«'Xp{??i'j?]iu}, to[t
i=1 Y =(2)\)kf f e st
(32) o Jo
1 s, s
where x| I1 exp{siDsHl}a( I e‘si+1}dsk---dsl+s(t).
R — i=1 Y
— if u#Fvy, (35
o(t,y,p)= YK (33
e Mt it w=vy, Passing now to the limit— <« in the last formula and taking

into account Eq(34) we obtain
and#nq,...,7 are independent random variables with a com-
mon exponential distribution with mean value 1. . . K <
Proof. Given the setV(t) [see Eq.(30)] let p(vs,v,) tI'_TOE X581, =(20) Ei];[1 0 y(mDn‘”)’y’“
denote a probability of an edge between two verticgand
v, in the graphg(t). Then we get recursively Xexp 7107541}, (36)

k=1
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which immediately implies Eq32). |
Theorem 4.1 follows immediately by the resu(82) and
(3D).

B. Proof of Corollary 4.1
Let

k—1
F;L<I<>==Ei[[1 9 0m 11,7, 8).-

Consider first the casgp>0. Straightforward computations

yield
k—2 n
= {25 52
1
m) Fullem)
k—2 N 1\ 1 n 1
=2, (D 1(5) o L oy
k—2
XF#(k—n)==Zl baF .(k—n). (37)
Define now
fe’s} oo k—2

FL(x) ==k23 xkF#(k)=k23 xknzl baF . (k—n). (39
It is easy to derive that
FL()=[F,(x)+ I:M(z)]ng1 bX", (39

which implies

> byx
~ n=1
F.(x)=F,(2) = : (40)
1- 3 bx"
m=1
wheneverz”_ b x"<1.
Notice that condition(22) is equivalent to
2\ (y,u) =sugx>0:F ,(x) <e}. (41)

Hence, it follows immediately by Eq€39) and (40) that
2\%(y,u) is the smallest positive root of the equation

1=, bx"
n=1

This proves Eq.25 when we recall the definition of the

coefficientsb,, from Eg. (37).
Next we shall prove Eq23). Observe that for anik=2
the multiple integral

PHYSICAL REVIEW E 65 066102

k—1
Fo(k) :=Eiljl 9(707141,7.0

1 K ro o0
— | — - X]_DXZ_ e X _1|:|X _
A5 [ Loy
1 k
_)|k
Y

converges absolutely. Hence, we have by &d)

Xe T T kX - dxg =

lim 2X\%(y, 1) =supgx>0:Fq(x) <}, (42)
pn—0
where
_ o0 o0 X k
Fo(x)= 2, XFo(k)= >, (—) Ik (43)
k=3 k=3 \7Y

Straightforward computations yield for &= 3,

k—2
Ik:f f exl( H (eXiDXi+1_1)eXi+1>
0 0 i=1

Xkalka,l‘ "Xm

k—3
:f f e X1 H (eXiDXi+1—1)e’Xi+1
0 0 =1

X p(X—2)dX— 2 -dXq (44)
where ¢ is a linear operator on the space of polynomials on
R, , such that for anyn=1,

Xn+1

$(x")= n+1

+n!x. (45)

SetpO(x)=x, ¢M(x)=¢(x), and define recursively
M () =¢"[p(x)], m=1.
Then we derive from Eq44)

I = f:ef"lgb(k)(xl)dxl. (46)

Next we observe that for ak=0,

2
+2x

X3

$P(0= | 5 +2x| = 57 +x+ (x).

Furthermore, it is trivial to check using an induction argu-
ment that in fact for alh=2 andx=0,

n+1

SM00= gy TR S0+ (). (4)

Indeed, assume that for sorke 2 the relation(47) holds for
all 2=n=<k. Then we have by the linearity of the operatiyr
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k+1
$1V00=¢| gy tx SO0+ V()

1
= k1t (XN + () ++++ 3(x),

which by the definition(45) immediately implies Eq(47).
Substituting Eq.(47) into Eq. (46) we obtain for all
k=3,

|k=f e Xp*=2(x)dx
0

- xn+1 k=3 .
— —X + =X (i)
J' e n+1)! dx i=20 fo e *p"(x)dx

0

k-3 k-1
=142 =142 1,
=0 =

wherel,=1, which gives us

Fo-3, [ 13 (5

2 * k
220  x)
~ Y k=3 \7Y X
Foln=— <o i 21(3) <1,
k=1\7%Y

(49
i.e., as long ax< y/2. This together with Eq$42) and(48)
proves Eq.(23).
Finally, to prove Eq(24) consider

k—1
Eiljl 970741,y 1)

1 K ro o
(e
m~=Y) Jo 0
k—1

X [T (1—e W= xiisn)dx,- - dx,.
=1
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Clearly, the integral in the last formula converges monoto-
nously to 1 asu— . Hence by Eq(22) we readily get

20w, y)
lim————= 1,
w=y

m—

which proves Eq(24). [ |

VI. CONCLUSIONS

We have analyzed a general model of random dynamical
graphs, which interpolates between randomly grown net-
works[3] and random graphs. This approach provides a uni-
fied point of view for these two models by placing them in
one general class of dynamical graphs. The parameter of
memory introduced here allows one to see clearly the simi-
larities and differences of the models. This should be helpful
for the future design of the dynamical networks. In particu-
lar, our model with a positive finite memory shares the fol-
lowing properties of the finite social network§]: the uni-
form boundedness of the degrees of the vertices and the
decay of the old connections.

We described here the phase diagram for our model,
which reveals the concurrent roles of growth and aging in the
network. We showed that the critical value of the connectiv-
ity parametei “" is a continuous function of the removal rate
w>0. Our conjecture is that this line is a convex function.
This would imply thatR(u, y) defined in Eq(28) reaches its
minimum for somew >0, which provides a parameter for
the most efficient network in this class. We also derived here
that\“ has a jump ap.=0. This confirms a phase transition
of the first order aju=0 along this parameter.

Another question we leave open here is the jump of the
size of the largest component at the critical value of the
parameter of connectivity. We expect this phase transition to
be of the second order fqu>0 by analogy with random
graphs.

We used only the analytical methods in our study. We
partially answered the questions raised about the phase dia-
gram by the authors of Ref6]. A challenging task for the
future study is to describe the self-organizing behavior of the
dynamical graphs where the degree of a vertex depends on
the history of the vertex itself. A related static model of per-
colation on a triangle lattice was treated analytically in Refs.
[11,12. But for a dynamical model only computational re-
sults for a finite graph are available at pres@ng., Ref]6]).

ACKNOWLEDGMENT

Research was supported by the Swedish Natural Science
Research Council.

066102-8



DYNAMICAL RANDOM GRAPHS WITH MEMORY PHYSICAL REVIEW E 65 066102

[1] V. A. Malyshev, Discrete Math. AppB8, 247 (1998. 046132(2001).
[2] R. Albert, H. Jeong, and A.-L. BarasiaNature(London 406, [7] B. Bollobas, Random GraphgAcademic, New York, 1985
378(2000. [8] S. Janson, T. tuczak, and A. Ruski, Random Graphs
[3] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. New- Wiley-Interscience Series in Discrete Mathematics and Opti-
man, and S. H. Strogatz, Phys. Rev6& 041902(200J. mization (Wiley-Interscience, New York, 2000

[4] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rew63 [9] K. B. Athreya and P. E. NeyBranching Processe&Springer-
056125(2001). Verlag, New York, 1972

[5] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys[10] T. S. Turova(unpublished
Rev. E64, 025101(2001). [11] J. Jonasson, J. Appl. Probads, 852(1999.

[6] E. M. Jin, M. Girvan, and M. E. J. Newman, Phys. Re\64& [12] O. Haggstran and T. S. Turova, J. Stat. Phyl€4, 471(2001).

066102-9



