
PHYSICAL REVIEW E, VOLUME 65, 066102
Dynamical random graphs with memory
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We study the large-time dynamics of a Markov process whose states are finite but unbounded graphs. The
number of vertices is described by a supercritical branching process, and the edges follow a certain mean-field
dynamics determined by the rates of appending and deleting: the older an edge is, the lesser is the probability
that it is still in the graph. The lifetime of any edge is distributed exponentially. We call its mean value
~common for all edges! a parameter of memory, since it shows for how long the system keeps a particular
connection between the vertices in the graph. We show that our model provides a bridge between two well-
known models: when the parameter of memory goes to infinity this is a generalized model of random growth,
and when this parameter is zero, i.e., no memory, our model behaves as a random graph. Thus by introducing
a general class of dynamical graphs we have a unified overview on rather different models and the relations
between them. We find all the critical values of the parameters at which our model exhibits phase transitions
and describe the properties of the phase diagram. Finally, we compare and discuss the efficiency of the
corresponding networks.

DOI: 10.1103/PhysRevE.65.066102 PACS number~s!: 02.50.2r, 64.60.2i, 89.75.Fb
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I. INTRODUCTION

Randomly grown networks became a subject of intens
study over the last few years~see, e.g., Refs.@1–6# and the
references therein!. Examples of such systems range fro
the artificial structures such as the World Wide Web to
social networks and the biological neural networks. Clea
the mathematical models describing these structures pos
different properties. The authors of ‘‘Are randomly grow
graphs really random?’’@3# give a negative answer to thi
question, showing dramatic difference in the behavior of t
classes of models.

We investigate a general model that apparently provide
bridge between the randomly grown graphs@3# and the clas-
sical random graphs@7,8#. Recall a definition of a randomly
grown network according to Ref.@3#. Starting with a single
vertex the graph evolves in a discrete time, acquiring a n
vertex at each step. Also, at each step a new edge app
with a probabilityd between two vertices chosen uniform
over all the existing vertices of the current graph. This i
simple but nontrivial example of a nonhomogeneous netw
where the degree of a vertex depends on its age. One o
basic features of this model is the monotonicity associa
with the acquisition of edges: once an edge is introduced
a model it stays there forever.

On the other hand, there are many real world netwo
affected by the aging of the connections as well as nod
e.g., social networks@6# lose permanently some connection
the neural networks change their architecture due to syna
plasticity, or the so-called decaying networks@4# are subject
to a permanent damage of the edges.

Our aim here is to analyze the concurrent roles of grow
and aging resulting in removal of links, in the structure o
dynamical random graph. Let us introduce the model
study here.
1063-651X/2002/65~6!/066102~9!/$20.00 65 0661
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A. The model

Let V(t) andL(t) denote the set of vertices and the set
edges, correspondingly, at timet. We assume that att50 we
have just one vertex with no edge:uV(0)u51 andL(0) is an
empty set.

With time, our graph accumulates vertices, meaning t
uV(t)u is increasing, in the following random way. Ever
vertex in the graph generates new vertices with intensitg
and independent of the rest of the system. Put in ano
way, with every vertex in the graph we associate a Pois
process with intensityg, every occurrence of which corre
sponds to the appearance of a new vertex in the graph. E
newly acquired vertex generates new ones in the same f
ion and independent of the rest. Thus the number of
verticesuV(t)u is described by a supercritical branching pr
cess for more details, see Ref.@9#!. In particular, it is easy to
see that the averaged size of our network grows expon
tially:

EuV~ t !u5egt. ~1!

where E denotes the sign of mathematical expectation.
soon as there are two vertices in the graph, from every ve
the edges are drawn with a common intensityl and indepen-
dent of other processes. The end of an edge drawn at timt
from a vertexvPV(t) is chosen uniformly among the rest o
existing verticesV(t)\$v%. In other words, with every vertex
we associate another Poisson process with intensityl, whose
every occurrence corresponds to the appearance of a
edge from this vertex to the one chosen with equal probab
ties among the rest of the vertices in the graph. Furtherm
any edge in the graph is deleted with an intensitym. This
means that the lifetime of any edge is exponentially distr
uted with the mean value 1/m. All the processes of appendin
and deleting are independent.
©2002 The American Physical Society02-1



a

hi
co

rl

nu
m

un
e

p

r
e

s-
f
e

s,
s

ris-
ne
all

ges.

e
age

all
f
s a

he
on-
he
we
al

ny
the

cal

/
dy

be

ree

e

w

ry
ith
e
its

Mak-
king

a
ur
am
o n

is
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This model is a subgraph of a certain random gramm
introduced and studied by Malyshev in Ref.@1#. More de-
tailed analysis of the graph„V(t),L(t)… can be found in Ref.
@10#, where a number of important characteristics of t
graph are presented, in particular, the asymptotics of the
ditional probabilities of the edges is derived.

B. Comparison and classification
of the dynamical graph models

If the edges are not being deleted in our model, it clea
resembles a model of random growth. We prove below~Sec.
II ! that when the rate of deletingm is zero, our model is
indeed a generalized randomly grown network in a conti
ous time, but whenm→` our model behaves as a rando
graph. Observe also that whenm is positive and finite our
model captures the properties of the social network@6# as
well, namely, that the average degree of the vertices is
formly bounded and the system loses old enough conn
tions. Furthermore, parameterg allows one to choose a
proper scaling of a network’s growth with respect to the a
pearance of new connections.~A lack of this property in the
known growing networks was discussed in Ref.@6#.!

Clearly, whenm and g are fixed the connectivity of ou
model increases withl. Our main result here is the phas
diagram on the entire space of the parametersg.0, m>0,
andl.0 ~see Fig. 1 and the details in Sec. IV below!. For
any fixedg.0 we find a functionlcr(g,m), m>0, defined
as a line separating two areas of parameters:~I! if l
.lcr(g,m) then asymptotically almost every graph po
sesses a giant component that has a positive fraction o
the vertices, and~II ! if l,lcr(g,m) the graphs do not hav
such a component. We will show thatlcr(g,m) for any fixed
g.0 is a continuous function inm.0, but as one can gues
this function has a jump atm50 due to the fact that at thi

FIG. 1. Phase diagram. A graph of functionlcr(g,m), m>0, for
a fixed valueg.0. If the parameters belong to the supercritic
area, then the corresponding graph has asymptotically almost s
the giant component of the order of the entire graph. If the par
eters lie in the subcritical area, then the corresponding graphs d
possess such a component. Whenm50 the critical value is
lcr(g,0)5g/8, and limm↓0 lcr(g,m)5g/4. As m→` the graph’s
asymptotic line is (m2l)/2. Observe that the functionlcr(g,m) is
nonlinear inm although the graph looks like a straight line for th
particular choice ofg.
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point the properties of the graph change drastically. Surp
ingly enough, the result is that this jump is not as big as o
might expect by switching from a graph that accumulates
the edges to the one that has only the relatively new ed
More precisely, we prove below that

lcr~g,0!5
g

8
and lim

m↓0
lcr~g,m!5

g

4
. ~2!

It is shown in Ref.@10# that in the supercritical phase th
long paths can be composed entirely of the edges whose
is uniformly bounded. This, as well as a relatively sm
jump at zero confirmed by Eq.~2!, implies that the process o
removal of links regarded usually in a negative sense a
‘‘permanent random damage’’ to a network~e.g., Ref.@4#!,
may have in fact a positive effect on the efficiency of t
network. Namely, there is no need to preserve all the c
nections in order to maintain the giant component, if t
system shows a sufficient enough growth. Therefore
come up with a different interpretation of the rate of remov
m: we call the value 1/m a parameter of memorysince it
shows for how long the system keeps or ‘‘remembers’’ a
particular connection between the vertices. This leads to
following classification of the general class of the dynami
graphs with respect to the parameter of memory~or aging!:
dynamical graphs without memory (1/m50)→random
graphs, dynamical graphs with an infinite memory (1m
5`)→randomly grown networks, and the model we stu
here we shall call eventuallydynamical graphs with a finite
memory(0,1/m,`).

Rephrasing the authors of Ref.@3# one may note that the
randomly grown graphs have an excess of memory to
really random.

II. DEGREE DISTRIBUTION

We shall show here that the distribution of vertex deg
drastically changes from being exponential whenm50 to
being generalized Poisson whenm.0, and finally converg-
ing to Poisson whenm→`.

Let dk(t) for anyk>0 denote the expected number of th
vertices of degreek at time t in our graph G(t)
5„V(t),L(t)…. Thus we haved0(0)51 anddk(0)50 for all
k>1. Within a small time interval (t,t1D# the expected
number of isolated vertices changes as follows:

d0~ t1D!'d0~ t !22lDd0~ t !1mDd1~ t !1gDEuV~ t !u

1o~D!, ~3!

where gDEuV(t)u is simply the expected number of ne
vertices appearing within the period (t,t1D#, and the coef-
ficient 2l in the second term is due to the fact that eve
vertex increases its degree by producing itself an edge w
probabilitylD, or by being chosen by any other vertex in th
setV(t) to be connected to. Also, every vertex decreases
degree as soon as one of the adjacent edges is deleted.
ing use of the properties of the Poisson process and ta
into account Eq.~1! we derive from Eq.~3!:
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DYNAMICAL RANDOM GRAPHS WITH MEMORY PHYSICAL REVIEW E 65 066102
d08~ t !522ld0~ t !1md1~ t !1gegt. ~4!

A similar argument leads to the following equations:

dk8~ t !522ldk~ t !1m~k11!dk11~ t !2mkdk~ t !

12ldk11~ t ! ~5!

for all k.1. It is natural to search for a solution of th
system assuming that

lim
t→`

dk~ t !

egt 5pk , k>0. ~6!

Clearly, pk is the probability that in the limiting graph~as t
→`! a randomly chosen vertex has a degreek, and in par-
ticular

(
k50

`

pk51. ~7!

Then we have by Eqs.~4!, ~5!, and~6!

gp0522lp01g1mp1 ,

gpk52l~pk212pk!2m@kpk2~k11!pk11#, k.0.
~8!

To avoid confusion we shall write sometimespk
5pk(m,g,l). Consider some particular cases.

If m50 it is easy to derive from Eqs.~8! and ~7!

pk5pk~0,g,l!5
~2l/g!k

~112l/g!k11 , k>0 ~9!

for all g.0, l.0. Thus under the conditionm50 the de-
gree distribution in our model follows the same exponen
law as does the model of randomly grown network. In fa
whenl/g<1 we obtain exactly the same distribution as f
a randomly grown network@3# with parameterdªl/g. On
the other hand, unlike a randomly grown network, our mo
is defined for all valuesl/g.1 as well. This is due to the
fact that we have an extra parameter of the system’s gro
in time. Furthermore, our network evolves in a continuo
time. Therefore we call this case a generalized rando
grown network.

Let now m.0. First of all we observe that whenm5g
.0 the system~8! becomes

12
2l

g
p01~p12p0!50,

2l

g
~pk2pk21!2~k11!~pk112pk!50, k.0. ~10!

Settingdkªpk2pk21 , k.0, helps us to solve this system
and get

d15
2l

g
p021,
06610
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and fork.1,

dk5S 2l

g D k21 1

k!
~p12p0!5S 2l

g D k21 1

k!
d1 ,

which yields

pk5p01 (
n51

k

dk5p01S 2l

g
p021D (

n51

k S 2l

g D n21 1

n!
.

~11!

Observing thatpk→0 ask→` @see Eq.~7!#, we get from
here

p05F S 2l

g D 21

2p0G~e2l/g21!.

This gives us

p05
g

2l
~12e22l/g!,

which together with Eq.~11! results in the following gener-
alized Poisson distribution:

pk5pk~g,g,l!5
g

2l
e22l/g (

n5k11

` S 2l

g D n 1

n!
, k>0.

~12!

In the general casem.0 one can write the solution to th
system~8! in the form

pk~m,g,l!5pk~g,g,l!1 (
n51

`

~g2m!npkn ,

where the coefficientspkn satisfy certain recurrent relation
to be derived from Eq.~8!. However, we shall not focus on
finding exact solutions in the general case.

Consider now another special case assumingl5l(m) so
that

lim
m→`

l~m!

m
5c ~13!

for some positive constantc. In this case it is straightforward
to check that in the limit whenm→` while g.0 and c
.0 are being fixed arbitrarily, the following Poisson distr
bution satisfies Eq.~8!:

lim
m→`

pk„m,g,l~m!…5
~2c!k

k!
, k>0. ~14!

This is exactly the limiting~asn→`! degree distribution for
the well-known modelGn,p which is a graph onn vertices,
whose edges are independent and a probability of any ed
p52c/n ~see Ref.@7#!.

Notice that although the degree distribution is not the
timate characteristic of the graphs, we have extra informa
about the topology of the graphs, namely, all the models
2-3
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TATYANA S. TUROVA PHYSICAL REVIEW E 65 066102
consider here allow edges between any pair of the verti
Thus we showed that our graph model interpolates ind
between the randomly grown graphs and the random gra

III. THE CASE µÄ0: A RANDOMLY GROWN GRAPH

We showed already that the degree distribution for
model with m50 follows the exponential law as does th
randomly grown graph@3#. But since our range of param
eters is wider we shall consider also the dynamics of
sizes of the connected components.

Let Nk(t) denote the number of the components of s
k>1, and letNk(t)5ENk(t). Observe that

N1~ t !5d0~ t !, ~15!

while for anyk.1 we derive

Nk~ t1D!2Nk~ t !5ES 22kNk~ t !lD
uV~ t !u2kNk~ t !

uV~ t !u21

22kNk~ t !lD
kNk~ t !21

uV~ t !u21

1lD (
n51

k

nNn~ t !
~k2n!Nk2n~ t !

uV~ t !u21 D
1o~D!, ~16!

where the first term on the right-hand side corresponds to
events that every vertex from anyk component might get a
link with a vertex that does not belong to anyk component,
the second term corresponds to the events that every ve
from any k component might get a link with a vertex th
also belongs to ak component, and the third term corre
sponds to an emerging of ak component whenever two com
ponents whose sizes are summed up tok, are connected
Making use of the properties of the Poisson process we
rive from here

Nk8~ t !522klNk~ t !1l (
n51

k

n~k2n!E
Nn~ t !Nk2n~ t !

uV~ t !u21
.

~17!

If we assume~see also Ref.@3#! that

lim
t→`

E
Nk~ t !

uV~ t !u
5 lim

t→`

Nk~ t !

egt 5ak , k>1, ~18!

then according to Eqs.~15! and ~9! we have

a15
1

112l/g
, ~19!

and from Eq.~17! we get the recurrent relations

gak522klak1l (
n51

k

n~k2n!anak2n , k>2. ~20!
06610
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Thus we come up with exactly the same relations as obta
in Ref. @3# but with the parameterl/g replacingd in Eq. @3#.
Recall that according to Eq.@3# the valued51/8 is the point
of phase transition. Hence, we readily get repeating the s
argument as in Eq.@3# that for anyg.0 the critical value of
l at which the mean value of the largest component exhi
a phase transition is

lcr~g,0!5
g

8
. ~21!

It was conjectured in Ref.@3# that this phase transition is o
an infinite order.

IV. THE PHASE DIAGRAM

Let us fix g.0 and m>0 arbitrarily and consider the
corresponding models for different positive valuesl.
Clearly, the connectivity of the model increases withl. We
already established in Eq.~21! that lcr(g,0)5g/8. Whenm
.0 one also expects, by analogy with classical rand
graphs, the existence of the unique critical valuelcr(g,m)
that separates the area of parameters where asymptoti
almost every graph possesses a giant connected compo
containing a positive fraction of all the vertices, and the a
of parameters where the graphs do not have such compo
Notice that the largerm is, the shorter is the life expectatio
of any edge, which results in the decrease of the connecti
of the graph. This in turn implies that for every fixedg.0
function lcr(g,m) should be an increasing function ofm.

Let us formulate now our main result, which is an exa
formula for the line of phase transition on the state space
the parameters:g.0, m.0, l.0. In the sequel for any two
real numbersa and b we shall write max$a,b%5a∨b and
min$a,b%5a∧b.

Theorem 4.1.For anyg.0 andm.0

2lcr~g,m!5supH x.0:(
k52

`

xkE)
i 51

k21

g~h i∧h i 11 ,g,m!,`J ,

~22!

where

g~ t,g,m!5uS t

g
,g,m Det5H e2$m/g21%t21

g2m
if mÞg,

t

g
, if m5g,

andh1 ,...,hk are independent random variables with a co
mon exponential distribution with mean value 1.

The proofs of the results of this section are given in t
section below. We just briefly mention here that in the pro
of Theorem 4.1 we use the ideas from branching processe
compute the probability of existence of a giant compone
The main difficulty to overcome is the nonhomogeneity
the graph. We exploit in the proof the asymptotics of t
probabilities of the edges derived in Ref.@10#.

Next we shall discuss some properties of the phase
gram ~see Fig. 1! listed in the following corollary.
2-4
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Corollary 4.1.For any fixedg.0 the functionlcr(g,m)
is a strictly increasing continuous function inm.0, such that

lcr~g,0!5
g

8
,

lim
m↓0

lcr~g,m!5
g

4
, ~23!

lim
m→`

lcr~g,m!

m
5

1

2
, ~24!

and for anym.0 the valuelcr(g,m) is the smallest root of

11 (
n51

`
1

n! S 2
2x

m D n

)
l 51

n S 1

11~ l 21!m/g D50. ~25!

@Note that the first equality simply repeats Eq.~21! to com-
plete the picture here.#

It is worth noticing that the casem5g is in no way ‘‘spe-
cial’’ compare tomÞg, and it is easy to see that the functio
g(t,g,m) defined in Theorem 4.1 is continuous inm.0.
However, the casem5g is exactly solvable as we alread
saw in Eq.~12!, and in particular the following formula take
place.

Remark 4.1.In the casem5g Eq. ~25! becomes

11 (
n51

`

~21!n
1

~n! !2 S 2x

g D n

50,

and thuslcr(g,g)5(a2/8)g'0.723g, where a is the small-
est positive real root of the Bessel functionJ0(z).

The results of the Corollary 4.1 show that for any fix
positiveg function lcr(g,m) has a jump atm50, while this
function is absolutely continuous for allm.0. This confirms
in particular, a phase transition of the first order atm50
along this parameter. We do not study here the jump of
size of the giant component of the graph at phase transit
but we expect that for any fixedg.0 andm.0 the phase
transition atlcr is of the second order by analogy with ra
dom graphs.

Observe that the result~24! could be predicted already b
Eqs.~13! and ~14!, sincec51/2 is the critical value for the
graphGn,p with p52c/n.

To emphasize the role of the parameters let us w
L(t)5L(t,l,m,g). One can easily derive~see also Ref.@1#!
that the mean numberEuL(t)u of the edges satisfies the fo
lowing equation:

d

dt
EuL~ t !u52mEuL~ t !u1lEuV~ t !u, ~26!

which together with Eq.~1! yields

EuL~ t,l,m,g!u5
l

g1m
~elt2e2mt!. ~27!

Consider now forlcr5lcr(g,m),
06610
e
n,

e

R~m,g!ª lim
t→`

EuL~ t,lcr,m,g!u
EuV~ t !u

. ~28!

It is natural to relate this value to the efficiency of a limitin
network: smallerR means a better efficiency sinceR defines
the critical mean number of the edges that graph should p
sess in order to maintain the giant component of the orde
the entire graph. According to Eqs.~27! and ~1! we have

R~m,g!5
lcr~g,m!

g1m
, ~29!

which by Corollary 4.1 implies

R~m,g!5H 1
8 if m50,

1
4 if m↓0,

1
2 if m→`.

Recall that the corresponding critical ratio of the mean nu
ber of the edges to the mean number of the vertices fo
randomly grown graph@3# is also 1/8, while for a random
graph the critical ratio is 1/2~see Ref.@7#!. This means that
our model with a small positivem needs roughly speaking
twice as many edges as does a randomly grown grap
maintain the giant component~still this is twice as less as a
random graph needs to do so!. However, one gains efficienc
of a network by abandoning the condition of an infini
memory. Also, it is clear that unlike the scale-free netwo
@2# our model is robust to deletion of anyo(egt) nodes since
the average degree of any vertex is bounded by a cons
2l/m.

V. PROOFS

A. Proof of Theorem 4.1

First of all we notice that in the casem.0 writing equa-
tions similar to Eq.~17! for the mean number of thek com-
ponents does not look like a feasible task, since the mec
nism of splitting a component into two parts due to remo
of an edge depends on the very structure of the compon
Instead, in order to study the phase diagram we shall ela
rate on the ideas of branching processes proved to be u
in the random graph theory@8#. Observe that our process
nonhomogeneous. Therefore we need more delicate cha
teristics for the graph such as the asymptotics of the pr
abilities of the edges~see for the details Ref.@10#!.

Consider graphG(t). Sett150 and denotetn ,n>2, the
consecutive moments of jumps of the processuV(t)u, so that

uV~tn!u2uV~tn2 !u51 and uV~tn!u5n.

Further we shall write

V~ t !5$v0 ,v r 2
,...,vt uv~ t !u

%, ~30!
2-5
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where for each vertexvs index s denotes the moment o
appearance of this vertex in the graph. Conditionally on
setV(t) we shall reveal a connected component in the gr
G(t) using the following algorithm~see also Ref.@8#!.
Choose uniformly inV(t) a vertexvs1

to be the root. Find all

the vertices connected to this vertexvs1
in the graphG(t),

denote them$vs
2
1

1
,...,vs

2
k(1)

1
%, wheres2

1,¯,s2
k(1) , and call

them the first generation of the offspring ofvs1
. Mark vs1

as
saturated. Then for each nonsaturated but already revea
vertexvs

1 we find all the vertices connected tovs
1 in G(t) and

not used previously in the algorithm; denote themvs
2, add

them to the current tree, and markvs
1 as saturated. We ca

any vs8
2 an offspring~of the first generation! of vs

1, and also
an offspring of the second generation of the vertexvs1

. We
continue this process until we end up with a tree consis
of saturated vertices only. Clearly, this procedure resembl
branching process, and we shall call the offspring ofvs

k21

the offspring of thekth generation ofvs1
.

However, the numberX of the offspring we assign to a
given vertexvs at each step of our algorithm depends on
set of vertices that have been used, and also on the ages of
this vertex. On the condition thatT#V(t) is the set of the
vertices in the current tree in our algorithm, letXk(T,s,t)
denote the number of offspring of thekth generation of ver-
tex vs .

One expects that there is no long component in the gr
G(t) if this process dies out with a probability one. On t
other hand, if this process continues for a long enough t
one may expect to get a positive fraction of all the vertic
V(t) in the current component. Thus by analogy with The
rem 5.4@8# we have for anyg.0 andm.0,

lcr~g,m!5supH l: (
k51

`

lim
t→`

E Xk~vs1
,s1 ,t !,`J . ~31!

Next we shall prove the following result.
Lemma 5.1.For anyk.1

lim
t→`

E Xk~vs1
,s1 ,t !

5(2l)kE)
i 51

k21

uS 1

g
~h i∧h i 11!,g,m Dexp$h i∧h i 11%,

~32!

where

u~ t,g,m!5H e2mt2e2gt

g2m
if mÞg,

e2gtt if m5g,

~33!

andh1 ,...,hk are independent random variables with a co
mon exponential distribution with mean value 1.

Proof. Given the setV(t) @see Eq.~30!# let p(vs ,vu)
denote a probability of an edge between two verticesvs and
vu in the graphG(t). Then we get recursively
06610
e
h

d

g
a

e

h

e
s
-

-

EXk~vs1
,s1 ,t !

5E (
vs1

PV~ t !

1

uV~ t !u (
vsPV~ t !\$vs1

%
p~vs1

,vs!

3Xk21~$vs1
,vs%,s,t !5¯

5E (
vs1

PV~ t !

1

uV~ t !u (
vs2

PV~ t !\$vs1
%

p~vs1
,vs2

!¯

3 (
vsk

PV~ t !\$vs1
,...,vsk21

%
p~vsk21

,vsk
!. ~34!

It is trivial but worth noticing that the expectation sign he
refers to the indicessi that are the random moments of a
pearance of the vertices in our graph. For the rest of
proof let us writeu(t)5u(t,g,m). It has been proved in Ref
@10# that on the condition that$vs ,vt%PV(t) and given that
uV(s∨t)u5V̄s∨t one has the following asymptotics:

p~vs ,vt!52l
u„t2~s∨t,t !…

V̄s∨t

@11«1~s∨t,t !#,

where«1(u,t)→0 asu,t→`. Consulting Ref.@10# for de-
tails one can see that Eq.~34! equals

~2lg!kE
0

t

¯E
0

t

e2g~ t2s1!S )
i 51

k21

exp$2g~si∨si 11!%

3u„t2~si∨si 11!…egsi 11D dsk¯ds11«~ t !,

where«(t)→0 as t→`. Making a change of variables in
this integral we rewrite the last formula as follows:

~2lg!kE
0

t

¯E
0

t

e2gs1

3S )
i 51

k21

exp$g~si∧si 11!%u~si∧si 11!e2gsi 11D dsk¯ds1

1«~ t !

5~2l!kE
0

t

¯E
0

t

e2s1

3F )
i 51

k21

exp$si∧si 11%uS si∧si 11

g De2si 11Gdsk¯ds11«~ t !.

~35!

Passing now to the limitt→` in the last formula and taking
into account Eq.~34! we obtain

lim
t→`

E Xk~vs1
,s1 ,t !5~2l!kE)

i 51

k21

uS 1

g
~h i∧h i 11!,g,m D

3exp$h i∧h i 11%, ~36!
2-6



s

on

u-

DYNAMICAL RANDOM GRAPHS WITH MEMORY PHYSICAL REVIEW E 65 066102
which immediately implies Eq.~32!. j
Theorem 4.1 follows immediately by the results~32! and

~31!.

B. Proof of Corollary 4.1

Let

Fm~k!ªE)
i 51

k21

g~h i∧h i 11 ,g,m!.

Consider first the casem.0. Straightforward computation
yield

Fm~K !5 (
n51

k22

~21!n11S 1

g2m D nF)
l 51

n S 1

lm/g

2
1

11~ l 21!m/g D GFm~k2n!

5 (
n51

k22

~21!n11S 1

m D n 1

n! F)
l 51

n
1

11~ l 21!m/gG
3Fm~k2n!5..(

n51

k22

bnFm~k2n!. ~37!

Define now

F̃m~x!ª(
k53

`

xkFm~k!5 (
k53

`

xk(
n51

k22

bnFm~k2n!. ~38!

It is easy to derive that

F̃m~x!5@Fm~x!1Fm~2!# (
n51

`

bnxn, ~39!

which implies

F̃m~x!5Fm~2!

(
n51

`

bnxn

12 (
m51

`

bnxn

, ~40!

whenever(n51
` bnxn,1.

Notice that condition~22! is equivalent to

2lcr~g,m!5sup$x.0:F̃m~x!,`%. ~41!

Hence, it follows immediately by Eqs.~39! and ~40! that
2lcr(g,m) is the smallest positive root of the equation

15 (
n51

`

bnxn.

This proves Eq.~25! when we recall the definition of the
coefficientsbn from Eq. ~37!.

Next we shall prove Eq.~23!. Observe that for anyk>2
the multiple integral
06610
F0~k!ªE)
i 51

k21

g~h i∧h i 11 ,g,0!

5S 1

g D kE
0

`

¯E
0

`

~ex1∧x221!¯~exk21∧xk21!

3e2x12¯2xkdxk¯dx15..S 1

g D k

I k

converges absolutely. Hence, we have by Eq.~41!

lim
m→0

2lcr~g,m!5sup$x.0:F̃0~x!,`%, ~42!

where

F̃0~x!5 (
k53

`

xkF0~k!5 (
k53

` S x

g D k

I k . ~43!

Straightforward computations yield for allk>3,

I k5E
0

`

¯E
0

`

e2x1S )
i 51

k22

~exi∧xi 1121!e2xi 11D
3xk21dxk21¯dx1

5E
0

`

¯E
0

`

e2x1S )
i 51

k23

~exi∧xi 1121!e2xi 11D
3f~xk22!dxk22¯dx1 ~44!

wheref is a linear operator on the space of polynomials
R1 , such that for anyn>1,

f~xn!5
xn11

n11
1n!x. ~45!

Setf (0)(x)5x, f (1)(x)5f(x), and define recursively

f~m11!~x!5f~m!@f~x!#, m>1.

Then we derive from Eq.~44!

I k5E
0

`

e2x1f~k!~x1!dx1 . ~46!

Next we observe that for allx>0,

f~2!~x!5fS x2

2
12xD5

x3

3!
1x1f~x!.

Furthermore, it is trivial to check using an induction arg
ment that in fact for alln>2 andx>0,

f~n!~x!5
xn11

~n11!!
1x1f~x!1¯1f~n21!~x!. ~47!

Indeed, assume that for somek.2 the relation~47! holds for
all 2<n<k. Then we have by the linearity of the operatorf,
2-7
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f~k11!~x!5fS xk11

~k11!!
1x1f~x!1¯1f~k21!~x! D

5
1

~k11!!
f~xk11!1f~x!1¯1f~k!~x!,

which by the definition~45! immediately implies Eq.~47!.
Substituting Eq.~47! into Eq. ~46! we obtain for all

k>3,

I k5E
0

`

e2xf~k22!~x!dx

5E
0

`

e2x
xn11

~n11!!
dx1 (

i 50

k23 E
0

`

e2xf~ i !~x!dx

511 (
i 50

k23

I i 12511 (
i 52

k21

I i ,

whereI 251, which gives us

F̃0~x!5 (
k53

` S x

g D k

I k5 (
k53

` S x

g D kS 11 (
i 52

k21

I i D
5 (

k53

` S x

g D k

1(
i 52

` S x

g D i

I i (
k5 i 11

` S x

g D ~k2 i !

5 (
k53

` S x

g D k

1S F̃0~x!1
x

g D (
k51

` S x

g D k

. ~48!

From here we readily derive

F̃0~x!5

S x

g D 2

12(
k53

` S x

g D k

12 (
k51

` S x

g D k
,` if (

k51

` S x

g D k

,1,

~49!

i.e., as long asx,g/2. This together with Eqs.~42! and~48!
proves Eq.~23!.

Finally, to prove Eq.~24! consider

E)
i 51

k21

g~h i∧h i 11 ,g,m!

5S 1

m2g D kE
0

`

¯E
0

`

e2x12¯2xk

3)
i 51

k21

~12e2~m/g21!xi∧xi 11!dx1¯dxk .
06610
Clearly, the integral in the last formula converges mono
nously to 1 asm→`. Hence by Eq.~22! we readily get

lim
m→`

2lcr~m,g!

m2g
51,

which proves Eq.~24!. j

VI. CONCLUSIONS

We have analyzed a general model of random dynam
graphs, which interpolates between randomly grown n
works @3# and random graphs. This approach provides a u
fied point of view for these two models by placing them
one general class of dynamical graphs. The paramete
memory introduced here allows one to see clearly the si
larities and differences of the models. This should be help
for the future design of the dynamical networks. In partic
lar, our model with a positive finite memory shares the f
lowing properties of the finite social networks@6#: the uni-
form boundedness of the degrees of the vertices and
decay of the old connections.

We described here the phase diagram for our mo
which reveals the concurrent roles of growth and aging in
network. We showed that the critical value of the connect
ity parameterlcr is a continuous function of the removal ra
m.0. Our conjecture is that this line is a convex functio
This would imply thatR~m, g! defined in Eq.~28! reaches its
minimum for somem0.0, which provides a parameter fo
the most efficient network in this class. We also derived h
thatlcr has a jump atm50. This confirms a phase transitio
of the first order atm50 along this parameter.

Another question we leave open here is the jump of
size of the largest component at the critical value of
parameter of connectivity. We expect this phase transition
be of the second order form.0 by analogy with random
graphs.

We used only the analytical methods in our study. W
partially answered the questions raised about the phase
gram by the authors of Ref.@6#. A challenging task for the
future study is to describe the self-organizing behavior of
dynamical graphs where the degree of a vertex depend
the history of the vertex itself. A related static model of pe
colation on a triangle lattice was treated analytically in Re
@11,12#. But for a dynamical model only computational re
sults for a finite graph are available at present~e.g., Ref.@6#!.
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